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Abstract: Inverters with thyristors need auxiliary 

turn off circuits. But even in the case of GTOs or IGBTs, 
an auxiliary turn off circuit has been used  to reduce turn 
off losses. The calculation of the optimal values of the 
passive commutating components (C and L), and the 
commutating current is usually done by means of 
equations found by graphical or empirical methods (see 
ref. [1]). 

This article shows a completely analytic method, 
which gives more accurate results. 

 
I. PASSIVE COMPONENTS. 
 
Figure 1 shows a modified Mc Murray inverter 

(see ref. [2]). Figure 2 shows the Burgum-Nijhof 
inverter (see ref. [3]), which has some advantages 
over the previous one (less voltage over the 
auxiliary thyristors, no need of special sequence 
when starting, etc.), but as we will see later is more 
sensitive to the losses (low Q) in the commutating 
circuit. Power switches are shown as thyristors but 
may be GTOs or IGBTs.  

 

 
Figure 3 shows the commutating current (in C 

and L) in the inverters of figure 1 and 2. The first 
inverter turns off the main thyristor in the 1st 

quarter of the period of the current, while the other 
one does it in the 3d quarter. 

 
We call θ the ratio between the period and the 

thyristor turn off  time tq:  
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And be K the dampening factor: 
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The current is a dampened sinusoid. The 

absolute value of the commutating current is (see 
fig. 3):  

  where n=1 for the inverter of fig. 1 and 
n=3 for the inverter of fig. 2.   
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(taking the worse case, for Q → ∞). V = 
minimum supply voltage - voltage drop in 
semiconductors. Using (1) we get: 
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If now we use the value of L taken from 

LCT π2= and the value of T given by (1) we 
obtain: 
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 and from it we 

extract the value of C: 
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 (4)    The only 

value we can play with is θ. We will try top find the 
value which gives the minimum C, thus using the 
minimum commutating energy 1/2 C V2. 

We take the derivative of (4) and equate it to 0: 
 

0
cos

cos

2 2

2
0 =

⋅⋅−
⋅

⋅
=

∂
∂

θ
π

θ
π

θ
πθ

θ
π

πθ

sin

KV

tIC q
  

θ
π

θ
π

θ
π

sin⋅=cos  

π
θ

θ
π =tan  

The solution has been solved using numerical 
methods (a top of end calculator, with which we 
have made the proof that the second derivative in 
this point is positive): 

θ = 3.65159828...  (5) 
We use this value in (4) and then we divide (3) 

and (4) to get: 
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For the inverter of figure 1 take ωt = π/2 for the 

value of K. 
For the inverter of figure 2 take ωt = 3π/2. 
Approximate values can be estimated taking K 

=1. 
 
From (6) and (7) we get 
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case K=1, we obtain form (3) the ratio from peak to 
commutating current, for θ = 3.651...: 
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II. COMPARING THE RESULTS.  
 

It may be interesting to compare our results 
with those given in ref. [1] where the value is 
estimated for K=1 and a graphical method: 

 
 Our equations Mc Murray 
tq/√(LC) 1.7208 1.68 
IM/I0 1.533 1.5 
θ 3.6516 3.74 
C  0.891 0.893 
L 0.379 0.397 

The major discrepancy is in the value of L. Ref. 
[1] does not give a way to get results for values of 
K<1. Note that the effect of the losses is higher in 
the Burgum-Nijhof inverter than in the Mc Murray 
one, as the first commutates in the 3d quart wave of 
the current cycle and the second in the 1st quart 
wave, so the current is much less dampened. This is 
probably the only advantage of the Mc Murray 
inverter over the other one and explains probably 
why the author was not worried by the problem of 
current dampening. 

Although the discrepancies between the values 
shown in the table above are not very important, the 
analytic method allows, programming the equations 
in a calculator or a computer, a much easy and safe 
way to calculate values, then compute the 
commutating current with available values,  and 
calculate the effect of component tolerances. 

 
III. CALCULATING THE COMMUTATING 

CURRENT FROM THE VALUES OF C AND L 
 
The values found for L and C have to be 

converted to practical existing values, specially in 
the case of the capacitor.. Take the next value that 
is higher than the theoretical one. Then an estimate 
of the Q can be found in the prototype: it is 
recommended to run it at a higher voltage than the 
minimum, having a margin for the commutating 
current. Then measuring with an oscilloscope the 
resonant peak of the voltage, the quality factor can 
be estimated: 

1
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π=   where Vs is the supply voltage 

and V1  the peak resonant voltage. 
We have achieved values of Q=40 using air 

cored chokes with Litz wire, and not much less 
using standard stranded wire. Although each 
individual wire is not enameled, the contact 
between wires occurs only in a reduced part of the 
surface. Solid core wire may cause Q to drop up to 
20. If a ferrite core is used, care should be taken to 
select a low loss type for the frequency of the 
resonant circuit and avoid saturation. 

The next step is to calculate the value of I0  
which results from the practical values of L,C and 
Q. We will try to do it as exact as possible, for 
example we estimated   IM = V√(C/L) and this is 



only approximate. See a more exact equation 
below.  

 
 
 
 IV. COMMUTATING CURRENT 
 
We will follow the example of the inverter of 

fig. 2 and then give also the result for fig. 1. 
The differential equation of the circuit is: 
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being the resistance in series with L, mainly choke 
losses). 

The general solution is 
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In our case, when t=0, V(0) = VM ⇒ A = VM, 
B=0 and we get: 
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The current is: 

 and with some manipulation we get: 
 (8) 
 

 
As we can see in figure 4, the I0 line does not 

cross the I curve in symmetrical points respect to  
3/4 of the period due to the fact that the function is 
not a sinusoid but a dampened one. To calculate the 
time corresponding to the points 3 and 4 would be a 
terrific task as the equation is not homogeneous. 
We take a different approach: Be I1, I2 the currents 
in the symmetrical points 1 and 2. Practical cases 
show differences between I1 and I2 of 15 to 25%. If 
we average the values of  I1 and I2 we should have a 
good approximate. 

So we will use into (8) the values of t given by 
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qtLCt += π   and use the simplifications  

sin(3π/2+β)=-cosβ, cos(3π/2+β)=-sinβ, 
sin(3π/2-β)=-cosβ, cos(3π/2-β)=--sinβ, to obtain: 
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Then we obtain the average of both values, 

which, after simplification gives: 
_______________________________________________________________________________________ 
 

 
Taking into account that 1/2(eβ+e-β) = coshβ and /2(eβ-e-β) = sinhβ: 
 

 
(9)
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Where n = 1 for the inverter of fig. 1 and n=3 

for the inverter of fig. 2. VM is the supply voltage 
less voltage drop in semiconductors. 

Simplified equation: provided that Q is not very 
low, the term cosh is near 1 and the term under sinh 
is near 0, so an approximate result is: 
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